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INTRODUCTION

Every economics teacher knows how easily students confuse average with mar-
ginal values. Managerial decision-makers, even if they understand the difference be-
tween average and marginal products, seem to be more like economics students than
economics teachers in this respect [Faulhaber and Baumol, 1988]. Does this imply
that it is inefficient to try for perfect efficiency? This essay argues that the “sub-
optimal” rules of students and managers are efficient if, like most of us, they are
liable to make computational errors and are averse to the risk of so doing.

In the first part, I review two famous examples of individual substitution of aver-
age for marginal quantities: “matching” behavior, as studied by the late Harvard psy-
chologist, Richard J. Herrnstein, and the lottery “paradox” discovered by Maurice
Aflais. In the second part, I show that a risk-averse individual who makes costly or

- imperfect calculations will rationally decide when to cease further estimates of ex-
pected utility. In the third part of the paper, I argue that such sub-optimizing is an
evolutionary stable strategy, defined by Maynard-Smith [1982] as a behavior robust
to genetic competition. I conjecture that the evolutionary stability of sub-optimizing
behavior results not from the costs of calculation, but from the costs of acquiring data
and communicating sclutions to other (non-optimizing) individuals. I conclude with a
summary and suggestions for future research.

TWO EXAMPLES OF SUB-OPTIMAL BEHAVIOR
Herrnstein’s Matching

The behavioral psychologist R. J. Herrnstein [Herrnstein and Prelec, 1991] pro-
vided the following homely illustration of sub-optimality. Let the average subjective
value of eating a sandwich (s) or pizza (p) for lunch, be given as V, or V These are
dollar values to the consumer, which depend on the proportion of sandwmh (w) and
pizza (7)) lunches eaten over the last 10 days. V, and V| for a particular consumer are:

V=150 -m, V, =4(l-m)=4m, sincem=1-m.

If these are the only choices, then the values for each lunch ¢an be shown in terms of
m_, the proportion of sandwiches consumed, as in Figure 1 below.
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FIGURE &
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Note: Title is after Hermstein and Prelec [1991]

This consumer is evidently one for whom sandwiches hold a fairly steady value as a
lunch staple, whereas pizzas give high value as oceasional treats, but quickly lose
their appeal if eaten too often.

In such a situation, most people, even economists, respond sub-optimally. As-
sume that the two lunches are equally-priced. Upon entering the lunch room, our
economist briefly considers which lunch gives him a greater subjective value, and
buys that item. If both are equal, he is indifferent. This means equalizing the values,
V, =V, implying 7 = 0.3 and «, = 0.7. His value from each meal is thus $1.20.Ifa
meal costs $1, this would leave him with a consumer surplus of $0.20.

This equating of values is sub-optimal. Maximizing requires equating the mar-
ginal change in values, not the values themselves. Here the value (V) over lunches of
both types is

(1) : V=aV +aV =a (150~ m)+ (1~x)4m).
Setting the derivative in terms of 7 equal to zero, the optimum occurs at m_= 0.55,

where the expected value is now $1.51, yielding an average consumer surplus of $0.51
per lunch, two-and-a-half times the sub-optimal $0.20. At = = 0.55, our optimal
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consumer’s value from pizza is $2.20, whereas he only gets $0.95 in value from a
sandwich. He must resist increasing his rate of pizza consumption, however, to achieve
optimal satisfaction. This degree of self-control may seem unrealistic, even for an
economist. In fact, there is overwhelming experimental evidence that most people
consistently fail to achieve such optimal control [Williams, 1988].

Herrnstein’s “matching” applies in situations when the return from each alterna-
tive (f) depends on the frequency, m, with which every alternative — includingi —is
chosen; j=(1,2, ... i, ..., n).

Generalizing equation (1), the individual’s total value can then be written:

n
@) Viry, ®g, .y in) = 2 VLT, Tg, s Ton).
J
Matching means equating the average or expected values of each alternative { and j:
3 V/P=V/P,

where P, and P, are the prices of alternatives ¢ and j, as in our lunch example where
P,=P_Inthetrue optimality condition, the ratios of marginal value (MV) to price are
equated:

) . MVJ/P=MV/P,

From equation (2), the marginal value of each alternative £ is:

n JV;
MViE)K =Vi+m !

6) . orti ZJ: ani’

Matching as in equation (3) instead of (4) ignores the interdependencies between
i and all the other j alternatives, as represented by the second term in equation (5).
This term may be extremely difficult to calculate in practice. Herrnstein and Prelec
[1991, 147] comment that this failure to coordinate among interdependent payoffs is
formally analogous to a multi-agent externality problem. Consider; for example, com-
muters who must choose whether to get to work by car or subway. If the cost of each
is the same, each commuter optimizes by adopting the quicker mode. This becomes an
example of “matching” — commuters will crowd onto the faster alternative until the
time spent on either is the same. While it is individually rational, it is secially sub-
optimal — every commuter does not consider the congestion her choice imposes on
others. Dixit and Nalebuff [1991, 229] have a simple exposition of this well-known
problem.

This multi-person analogy can be pushed further. Consider the optimal consump-
tion of sandwiches in our story as a form of subsidized “mass transit.” Recall that the
optimal consumption of sandwiches yielded a subjective value of only $0.95 per sand-
wich — less than the sandwich costs! To maximize total value, the high subjective
return on pizzas should be used to “subsidize” the consumption of sandwiches — more
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than the sandwiches themselves would merit. This is like taxing people who keep
cars in the city in order to subsidize the ridership of the subway.

When asked how his matching law differed from these classic problems of the
prisoner’s dilemma, Herrnstein once replied, “With this dilemma, you only need one
prisoner” [Speech to the Society for the Advancement of Secio-Economics, New York
City, March 1993]. In this sense we are all prisoners of our own desires. Failing to
coordinate and control our desires, we wind up leaving each urge free to maximize
“its own” return. It's not so bad to eat too much pizza, perhaps, but matching is now
used to model all sorts of serious addictions [Herrnstein and Prelec, 1992; Heyman,
forthcoming]. Someone may want to quit cocaine, a sexual obsession, or a life of crime,
but finds the behavior too rewarding to resist in the short run. With initially high but
steeply declining marginal returns, such addictions can clearly make one their pris-
oner, :

There is a suggestive analogy here between the optimal provisioning of public
goods by the state, and the optimal disciplining of desires by the superego. The super-
ego is “super” in the sense that it can have a “meta-preference” (a preference about
one’s preferences) to not be addicted. The social and religious support for such a su-
perego is a key aim of successful anti-addiction groups like Alcoholics Anonymous
[Bartold and Hochman, 19881.

But not all matching behavior is “addictive.” I will define addiction broadly as any
behavior that is directly self-injurious (it may also be subject to social sanctions), but
which the self-injuring person is nonetheless unable to control. Matching would not
be s0 common if it were always self-injurious. But as we will see, it characterizes all
known animal species. If not strictly “optimal,” when does matching lead to some
improvement? In formal terms, when does indulging in behavior i with the highest
average value (AV,) also produce the highest marginal value (MV, )? In our sandwich-
pizza problem: ‘

®) Vs =150 -7, V;J = 4(1—‘1Tp) = 4, since mo=1- T,

MV =150~ 2m, MV,=4 - 8n =8n —4.

It is straightforward then that V, >V _implies 7, < 0.30, and thus MV > MV . Then
MV, <MV, must imply V, < V,, and the former will be true whenever =, > 0.55. In
terms of Figure 1, this means that whenever sandwiches give a average payoff higher
than pizzas (i.e., whenever 7_ < 0.30, the point where the sandwich and pizza lines
cross) we should eat more sandwiches, If, on the other hand, pizza is giving a higher
average value, and in addition we are to the right of the average value curve’s peak
(i.e., whenever w_> 0.55) then we should eat more pizza.

This means that choosing the lunch with highest average value winds up produc-
ing the right marginal allocation except when 7_ is between 0.30 and 0.55. If =_is
uniformly distributed on the unit interval, it falls into this narrower interval only 25
percent ofthe time. Otherwise, the average and marginal indicators point in the same
direction. This shifts our attention from optimization, requiring the equality of all
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marginal values, and focuses it on the concept of melioration [Herrnstein and Prelee,
1991] — requiring only that marginal values be brought somewhat closer together.

The Allais Paradox

Another violation of the expected utility axiom is the “paradox” discovered by
Maurice Allais, the Nobel laureate. To illustrate, imagine that as Chief Financial
Officer (CFO), you must instruct your lieutenants how to6 invest $100 million of your
company’s daily cash-flow. You tell them that you regard a certain return of one per-
cent, or $1 million on this $100 million, as better than most of the “lotteries” offered
by the market. Given a choice between lotteries A and A*, for example:

A The certainty of $1 million.

A*: 1/100 chance of No Profit ($0).
89/100 chance of $1 Million.
10/100 chance of $5 Million,

you instruct them to always choose A over A*, which you write A > A¥,
“On the other hand,” you continue, “there are times when it is worth taking a
small risk for 2 much greater profit.” Thus, if faced with lotteries B and B*:

B: 89/100 chance of No Profit ($0).
11/100 chance of $1 Million.

B*: 90/100 chance of No Profit ($0).
10/100 chance of $5 Million.

vou instruct them to always choose B* over B, or B* > B.

This kind of choice has been staged by many experimenters [Machina, 1998], both
as a thought-experiment and with modest amounts of real money. The most common
of choices are the ones our CFO just made, A > A* and B* > B. But, as I shall now
show, these choices are inconsistent under expected utility theory.

This inconsistency does not depend on any assumptions about risk aversion, or
equivalently, the shape of the subject’s utility function. Thus, for any “shape” of util-
ity function U(-}, we can write:

(7a) A > A*:  U$1m) > (/1000 T($0) + (89/100)-U$ 1m) + (10/100)- U($5m)
=> (11/100)-U($1m) > (1/100)-U($0) + (10/100)-U($5m),

while

(7b) B* > B: (89/100)-U($0} + (11/100)-U($ 1m) < (806/100)- U($0)+(10/100)-U(§5m)
=> (11/100)-U($1m) < (1/100)-U($0) + (10/100)-U($5m).
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Implications (7a) and (7b) are obviously contradictory. (We write these as the prefer-
ence relation “ >“ rather than as the numerical inequality “ »”, since they clearly
violate the algebra of expected utility.)

The violation of expected utility has the further problem that it is “dynamically
inconsistent”— our CFO has given instructions that are self-contradictory in terms of
decision trees. “Decision trees” are commonly used to formalize decisions in business,
public policy, and computer programing. A decision tree is the “extensive form” of a
game, as opposed to its “normal” or matrix form, if the information and payoffs avail-
able to its players are well-defined [Gardner, 1995, 28-32]. The extensive form in-
cludes information on the sequencing of moves, so the same normal form game may
sometimes be decomposed into several different extensive forms. An extensive form
game or decision tree that is equivalent to the choice between lotteries A and A*, and
B and B¥, can be shown as Figures 2a and 2b, respectively, following Machina [1989].

The square nodes in each tree are points at which a decision must be made, while
round nodes represent stochastic moves by “nature,” with prebabilities summing to
one. If one commits to a particular course of action at each decision node, then it can
be seen that the product of the probabilities along all the non-excluded paths must
sum to one across paths. At the decision node in Figure 2a for example, assume one
commits to path A with certainty — eliminating path A* from consideration. Then at
the root of this tree, before nature moves at the first node, there are two ways to
arrive at the same final outcome of $1 m., with a probability summing to 100/100.
Similarly, if one commits to A* rather than A, this means three final! outcomes are
possible, with associated probabhilities: 10/100 ($5m), 1/100($0), and 89/100($1m). Thus
it can be seen that committing to path A is equivalent to choosing lottery A, while

- committing to path A¥ is equivalent to choosing lottery A* in our original Allais prob-
lem. Figure 2b is identical to 2a except for the lowest branch outcome, which has
fallen to $0. This makes a commitment to path B is equivalent to lottery B, whereas
path B* is equivalent to lottery B*.

Thus we have the same two lotteries at this choice node (A = B and A* = B*), but
embedded within two different larger Iotteries. This is known as a compound lottery.
The independence axiom of expected utility theory says that one’s choice over simple
lotteries should not depend on the particular compound lottery in which this choice is
embedded. The Allais paradox clearly violates independence. Our CFO’s underlings
might well find themselves confused by this, since their boss’s instructions to choose
A and B* — rather than the pairs (A, B) or (A%, B*) — commits them {0 making the
opposite choice over the same final options. Machina [1989, 1634-38] notes that this
dynamic inconsistency makes one prey to what he calls “the money pump.”

To illustrate, suppose that a manager follows her CEQ’s instructions in Figure 2a
by committing to a futures contract of A rather than A*. The economic forecast then
changes, and:Figure 2b is now her best available information. If this manager wants
to stick to her boss’s instructions, she will now have to pay something to be released
from her old commitment of A (now B}, so that she can pledge herself to B* (formerly
A¥*), A change of projections back to Figure 2a could send her scurrying back to A, and
paying another penalty to be released from her previous contract. If such a “money
pump” were to continue, her firm could obviously be sucked dry.
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FIGURE 2a
Dynamiec Choice Problem Generating Lotteries A and A*
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FIGURE 2b
Dynamic Choice Problem Generating Lotteries B and B*
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* 1711 $0
111100 A
$1m.
BN
$1 m.

Note that if the manager actually reaches the decision node in either Figure 2a or
2b, the tree’s lowest branched payoff will at that point have been eliminated. It will
have simply never happened, and so merit no further consideration. This is the mean-
ing of the independence axiom — one’s choice over a sub-lottery should be indepen-
dent of the larger lottery in which it is nested. When confronted with the Allais re-
sults, Raiffa [1968] suggested that subjects be taught how to decompose the problem
into compound lotteries, as in Figures 2a and 2b. If they really understood that the
choice of sub-lotteries is identical in both figures, Raiffa conjectured, subjects would
then wish to act in accord with the independence axiom. This would be like our man-
ager wishing that her boss’s instructions had been consistent. Raiffa’s conjecture has
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been confirmed experimentally by Conlisk [1989]. The Allais paradox can thus he
seen as the tendency to “oversimplify” a complex lottery, as will now be shown.

RISK-AVERSION AND “COMPLEXITY AVERSION”
Observed Preferences and Complexity

Ezpected utility maximization is an ideal norm of self-interested rationality.
The Herrnstein and Allais versions of sub-optimality show that most people are, in
fact, not terribly good at making simple calculations of expected utility. This means
that in such risky-choice problems, people face an additional risk — the risk of mak-
ing a mistake. But the Herrnstein and Allais behaviors ean be also be seen as at-
tempts to minimize that risk through “efficient simplifications.”

To see this in the Allais case, note that in (7a) and (7b), U($0) ean be normalized
to zero, since Von Neuman-Morgenstern expected utility is only unique up to a linear
transformation. The last line of (7b} is then (10/100)-U($5m) >(11/100)-U($1m), and
substituting this into the top line of (7a) implies

8) U($1m) > (89/100)-U($1m) + (11/100)-U($ 1m).

By saying that a simple lottery is preferred to its component sub-lotteries, (8) is clearly
a violation of the “independence axiom,” and so cannot be explained by simple risk-
aversion. It does make sense, however, for individuals who are not only averse to risk,
but to the risks of computational errors,

Consider a generalization of (8). By iterated substitution of sub-lotteries, (8) be-
comes

m n
(9a) Vix) >Z - Vi) =2 % VO, here2 <m<n.
J k

Then it follows algebraically, dividing by V(x), that

m n
(9h) 122522 T,
J k

Equations (9a) and (9b) say that the greater the number of partitions of expected
value in acompound lottery, or “lottery of lotteries,” the smaller their subjective sum,
This can be interpreted as a preference for less complexity, ceteris paribus. Here it is
important to note that the other inconsistent choice in the Allais problem, (A¥, B),
would imply a preference for more complexity, since it reverses the preference rela-
tions in (7a,’b) and therefore in (9a, b). However, this symmetric Allais-paradox choice
is significantly less common than the choice (A, B*), and may be due simply to ran-
dom information processing errors [Conlisk, 1989)].

The probabilities in (9b) are what Kahneman and Tversky [1979] call “subjective”
and clearly in error, since they sum to less than one. This was also found by Ellsherg
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[1961] in his famous experiment on unknown proportions. In this experiment, most
subjects preferred to bet on the color of a ball pulled at random from an urn filled with
an equal number of red and black balls, rather than bet on a second urn with un-
known proportions of red and black. Ellsberg’s subjects were “distributional pessi-
mists” becanse, whatever color they might guess for the unknown-proportion urn,
they acted as if its probability of being drawn was less than 50 percent, the known
probability for the other urn. This leads to a contradiction, since the probability of
picking either a red or a black ball from the unknown-proportion urn would then be
less than one.

The complexity-aversion of behavioral inequality (9a) can be seen as predicting
Ellsberg’s result, since the unknown-proportion urn is really a complex compound
lottery, one with as many different sub-lotteries as there are possible proportions of
black balls, =, € [0, 1]. All these lotteries, or values of =, are equally likely. It is
apparently not obvious to most people that this unknown-proportion urn has the same
ex-ante probabilities as the known-proportion urn. They may be convinced by an in-
tuitive argument, but proving it takes a bit of integral calculus.!

Imagine scanning a complicated compound lottery such as (9a) and making an
initial guess that it holds with equality, rather than inequality. You would then be
indifferent among all three lotteries of eaution (9a), only if you were sure that

a. you never made mistakes in calculating compound lotteries, or
b. you made imperfect but unbiased calculations and were risk-neutral.

But (a) is impossible, and (b) extremely unlikely for most human subjects. In fact, few
people would ever have enough information to have any basis for saying whether or
not (b) were true, Since hehavicral inequality (9a) viclates the independence axiom of
Von-Neuman-Morgenstern utilities, I will say that such preferences exhibit complex-
ity-aversion, rather than simple risk-aversion.

Recall Raiffa’s [1968] conjecture that subjects shown how to build up compound
lotteries would not violate the independence axiom. To test this conjecture, Conlisk
[1989] guided subjects through the choices leading up to a compound lottery — using
trees like Figures 2a and 2b. This “tutorial” reduces the incidence of both inconsistent
choices, (4, B*) and (A*, B). Interestingly, this tutorial also eliminated the previous
systematic bias — that (A, B¥), which implies complexity aversion, was much more
likely than (A*, B), which does not. These inconsistencies now appear as random
rather than systematic errors. Conlisk argues that the usefulness of expected utility
theory does not require human infallibility, but only that subjects’ errors do not sys-
tematically violate its axioms.

Now return to the Herrnstein matching problem. Note that in allocating extra
resources to average as opposed to marginal payoffs, the subject is in effect declaring
by eguations (3) to (5) that
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(10) V> Vi+ ﬂi% E,VL.

These Herrnstein preferences are similar to the Allais preferences in (9a) — the more
complex the representation of a choice problem, the less desirable that choice be-
comes. If caleulation is costly and error-prone, this is not obviously irrational. Often
there will not be substantial preference interdependencies, so that the summation of
terms in (10} is not worth calculating. Even if they do not net out to zero, one may well
decide that:

a. perfect calculations are unlikely, and even if they are perfect,
b. by the time caleulation is finished, the initial information is likely to be
out of date,

A Simple Model of Complexity Aversion

Both the Herrnstein and Allais types of complexity aversion can be modeled as
aversion to the risk of errors. Let an individual have a cerfainiy equivalent income,
x%%, reflecting expected utility over a lottery of the form:

n

(n V&CE) = 3 miVix),

i

Deﬁningz T, x,= x, assume that the agent knows x, but must estimate x°F. Let us
assume siinple risk aversion, or the concavity of V(). This implies x °F, and that

(12) Vix) — V'(x) (x — x°F) = V(xCE) % Vix) — V'(x) (x — x°F),

where V '(x) indicates a first derivative with respect to x.

Inequality (12) is a simplification, because if the individual does not have perfect
computational ability, x% in (11) will not be known with certainty, only estimated.
Call est*(x“F) the estimated certainty equivalent, i.e. the estimate of the frue certainty
equivalent at time £. If every attempt to estimate x°F gets more accurate, and if that
additional accuracy can actually be comprehended, then es#t*! (x°F) > est! (x°F), This
follows from the concavity of Vix); if two estimates of 2°F are unbiased around the
same midpoint, the estimate with the narrower range of values must have a higher
expected utility. If calculations were costless, then further estimations would con-
tinue until perfect accuracy was achieved.

There are two sorts of costs that can limit this process, however: the costs of
generating better estimates, and the cost of assimilating or processing these estimates.
Itis almost a truism of the computer age that as the costs of generating more accurate
information fall, our human ability to process information may only get more over-
whelmed. Thus more could be less, and we might be less able to accurately use a more
detailed estimate — even if that estimate itself were known to be more accurate. It is
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not clear which cost constraints, generating or processing, will be more binding in
maost choice problems.

First, consider the direct resource cost of estimation. One may just be making
increasingly accurate estimates of a steadily shrinking pie. This resource cost can be
expressed as a lowering of the average income derived from x, net of the effort of
calculation. If resources are spent at every estimation effort ¢, then comparing esti-

. mates at timesf and #+1, x**! < &%, Assume this decay in real resources is known and

measurable by the agent.

Next, consider the processing costs shown by behavioral inequalities (9a) and
(10}, which limit an agent’s ability to comprehend estimates that have become too
complex. These inequalities imply that even if resources have been spent to derive a
more accurate estimate, so thatx**' <x”, we may still find that est*! (x°F) < est*(x°F).
Thus the limits to reasonable estimation may derive not just from the cost of generat-
ing further accuracy, as reflected in the fall of x ¢, but also in the costs of processing
those estimates, as reflected in a fall in est? (x%%). 1 will try to model both sorts of
limits.? '

Assume that the “distributional pessimism” of complexity aversion means that
the estimated certainty equivalent is never greater than thetrue certainty equivalent
which a perfectly calculating agent would presumably know, so that est? [x%F] = (xCEY,
To reflect the costs in both generating and processing further estimates, I will now
rewrite the lower bound in (12) in terms of est(xF) instead of x°%, and put a time
superscript on all terms to indicate that this is an iterated estimate.

(12a) V(x®) — V't ) (- (x°E)) = V(x)* = V(xt) — V '(est* [x%E]) (x ¥ — est [ xCE ])

The upper bound in (12a} is just the limit imposed by simple risk-aversion, in the
absence of any issues of complexity aversion. The lower bound can be thought of as
the limit implied by complexity aversion; i.e., the rate at which further estimates are
actually felt to be utility-enhancing. We can use (12a) to show a hierarchy in the costs
of complexity — that a change in the estimated certainty equivalent is more impor-
tant for expected utility than a change in the actual certainty equivalent.

Proposition: The resource costs of estimation alone cannot decrease
the lower bound of (12a). Both the upper and lower bounds of (12a)
fall, however, if in addition to these resource costs, the estimated cer-
tainty equivalent falls.

The basic idea of the proof is not hard to see. First, assume an expenditure of
resources, ¥ > x**1, but with no loss of the estimated certainty equivalent, This
means (x°F)* must fall with each iteration, but es# [x“*] does not. Then the upper
bound of (12a) must fall — x? falls, its derivative therefore rises, and the final term
(x* — (x°®)*} increases by simple risk aversion. The lower bound, however, would
actually rise. Its derivative term V'(est* [x“%]) ig greater than V'(x?), so the drop in a*
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times V'{(est* [x“®]) must fall by more than Vi{x?} itself falls. (Recall that we are here
assuming est* [x°F] does not change.)

I the estimated certainty equivalent est* [x°F] actually rises, as one would hope,
then this lower bound of (12a) will increase by even more, a fortiori. So using up
resources has an ambiguous effect if it does not decrease the estimated certainty
equivalent. Any rise in this estimated certainty equivalent, however, although it does
use resources, at least improves the outlook on the worst case.

Now assume the opposite — a fall in the estimated certainty equivalent, estt+
[x°F} < est* [xCF], but with no fall in resources or the true certainty equivalent:
Xt =gt g=n (xPF) = (xPF)*+1 | The fall in esi® [x°F] forces the derivative term and its
multiplicand { x*- est*[x°F | ) in the lower bound to rise, so the lower bound fallg, Thus
added complexity would be costly even if it did not use added resources. If x* and (x®)*
fall, as they must whenever estimates use resources, then as already shown the up-
per bound must fall, and the lower bound would fall by even more.

This proposition shows a hierarchy of constraints, so that the final processing of
more accurate estimates is more important than the raw costs of estimation itself.
This may be related to Herrnstein’s [1991] finding that there 1s a large dispersion of
choices among individuals. De Palma et al. [1994] model this digpersion with differ-
ent computational abilities, In the present model, such differences operate only on
the level of resgurce costs, and efficiency on this level can be trumped by the costs of
processing complexity. Even without any individual differences in estimation costs,
there could still be significant differences in complexity aversion, leading to different
final choices.

AN EVOLUTIONARILY STABLE STRATEGY

The Allais results have not to my knowledge been tested on nonhuman subjects,
but there is little reason to expect other species to do better than humans over com-
pound lotteries. Herrnstein’s matching is certainly not encouraging in this regard. A
review by Williams summarizes:

The generality of the matching relation has been confirmed by a large
number of different experiments. Such studies have shown matching,
at least to a first approximation, with different species (pigeons, hu-
man, monkeys, rats), different responses {keypecking, lever pressing,
eve movements, verbal responses), and different reinforcers {food,
brain stimulation, money, cocaine, verbal approval). Apparently, the
matching relation is a general law of choice. [1988, 178]

Thig robust behavior is precisely what evolutionary biologist John Maynard-Smith
11982] terms an evolutionarily stable strategy (ESS). An ESS is a non-cooperative
{Nash) equilibrium which, once set by a large population, cannot be invaded by be-
havioral mutations in a few individuals. Since they are non-cooperative equilibria,
ESS are in general neither unique nor Pareto-efficient. Complexity aversion is there-
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fore probably only a local optimum, given the existing genetic limitations of most
species.

A formal model of complexity-aversion as an ESS is not undertaken here. But a
brief conjecture en the reasons for this apparent stability may be in order. It does not
seem likely that raw computational power poses the main obstacle. A computationally
capable mutation would not face severe physical constraints, unlike say, a human
being born with wings. After all, generations of economics students have learned to
solve problems like Herrnstein’s sandwich-pizza choice, at least on tests. The mental
ability required to do so without special training has almost certainly occurred in
many mutations. If computational power is not the main problem, thls reinforces the
hierarchy of constraints in equation (12a).

Rather than raw computability, the binding constraints on the success of such
mutations may be (a) the cost of acquiring data, and (b) the cost of communicating the
resulfs to other agents who are themselves not optimal processors. An example from
business practice may illustrate the point. Few managers use marginal analysis, even
if they understand the principle perfectly well [Baumol, 1977, 34-35]. Baumol conjec-
tures that this is because marginal calculations require information the firm may not
have. Salvatore [1993, 300-07] has an illuminating discussion of the difficulty in esti-
mating marginal cost functions in practice. Unless a firm wants to experiment with
radical changes in its production levels and input mix, it will usually not have data
outside of a narrow range of experience. Past data, if they exist, are often not compa-
rable due to changes in technology and product.

Calculating averages, by contrast, requires only a knowledge of the firm’s current
operating level. If the environment is changing rapidly enough, then “melioration”,
not optimization, may be the only feasible goal. By the time one collected data, esti-
mated costs, calculated the equality of marginal payoffs, and then moved to equalize
them, the true marginal payoffs would have changed.

SUMMARY AND EXTENSIONS

Herrnstein’s matching and the Allais paradox both demonstrate a preference for
simplifications, driven by the increased risk of mistakes in more complex calcula-
tions. This simplification may be efficient given the costs of generating more complex
estimations, or in trying to understand them after they are generated. One empirical
prediction is that an increased complexity of nested sub-lotteries, even without any
change in objective probabilities, will be treated as having lower expected utility.
Another is that differences in complexity aversion lead to variability in decisions,
even for individuals with the same computational ability.

This behavior’s extraordinary evolutionary stability should be investigated. If the
real barrier to marginal calculation is a lack of usable data, then better models and
simulations can help. Ifit is basic information processing costs, then these are certain
to fall, But if it is assimilating this new information, there is a problem of design and
presentation. Whatever the source, our inability to optimize can be greatly reduced
by information technology, with large potential gains in efficiency. There may also be
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role for basic economic-psychological education here — at least to convince people
that they really do need such support, even for apparently simple and everyday calcu-
lations.

NOTES

Thanks to Ralph Noble, my psychologist colleague, and to the editor and two annonymous refer-
ees for their extensive comments. I also wish to express gratitude te the late R. J. Herrnstein, who
seemed pleased to enter into long arguments with undergradnates like me. The usual caveats apply
with unusual foree.

1. Integrating over all possible probabilities for the unknown-proportion urn shows that «, and (1—m,),
the probability of the Black (B) and Red (R) outcomes respectively, must each be %%

=1
J 7, {B) + (1-m ) (R)dm, = (1/2)B + (1/2}R.

n=0

2. There is another sort of limit not modeled here which only strengthens our case. Apart from any
processing costs, more detailed estimates may be often be, in fact, less accurate than “cruder” esti-
mates. A recent study by Hlawitschka [1994], “The Empirical Nature of Taylor-Series Approxima-
tions to Expected Utility,” uses parameterized utility functions to simulate selection of stock portfo-
lios by expected utility. He shows that second-order Taylor approximations of expected utility are
often more accurate than much higher-order expansions — even for series that converge asymptoti-
cally. After all, he notes, such convergenee is only a property of the limit.
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